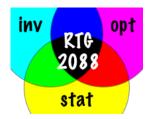
Limit Distributions for Regularized Wasserstein Distances on Finite Spaces

Third annual RTG 2088 Workshop

Marcel Klatt

September 26, 2018

Institute for Mathematical Stochastics University of Göttingen



Computational burden of Wasserstein distances

In general, the computational cost to calculate the Wasserstein distance

$$W_p(r,s) := \left\{ \min_{\pi \in \Pi(r,s)} \sum_{i,j=1}^N d^p(x_i, y_j) \pi_{ij} \right\}^{1/p}$$

is of order $\mathcal{O}(N^3 \log(N))$.

Computational burden of Wasserstein distances

In general, the computational cost to calculate the Wasserstein distance

$$W_p(r,s) := \left\{ \min_{\pi \in \Pi(r,s)} \sum_{i,j=1}^N d^p(x_i, y_j) \pi_{ij} \right\}^{1/p}$$

is of order $\mathcal{O}(N^3 \log(N))$. There exist some workarounds, e.g.

- Exploiting the underlying metric structure (Ling & Okada (2007))
- Graph sparsification (Pele & Werman (2009))
- Specialized algorithms (Gottschlich & Schuhmacher (2014))
- Subsampling methods (Sommerfeld, Schrieber & Munk (2018))

Computational burden of Wasserstein distances

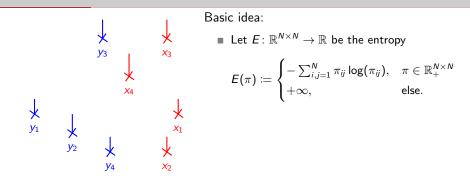
In general, the computational cost to calculate the Wasserstein distance

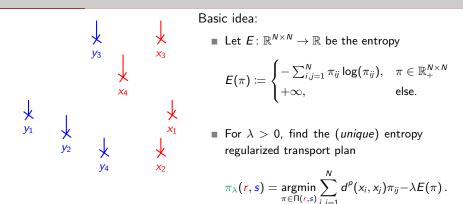
$$W_p(r,s) := \left\{ \min_{\pi \in \Pi(r,s)} \sum_{i,j=1}^N d^p(x_i, y_j) \pi_{ij} \right\}^{1/p}$$

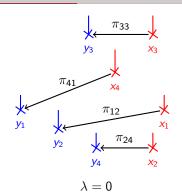
is of order $\mathcal{O}(N^3 \log(N))$. There exist some workarounds, e.g.

- Exploiting the underlying metric structure (Ling & Okada (2007))
- Graph sparsification (Pele & Werman (2009))
- Specialized algorithms (Gottschlich & Schuhmacher (2014))
- Subsampling methods (Sommerfeld, Schrieber & Munk (2018))

Regularization methods (Cuturi (2013), Dessein et al. (2016))







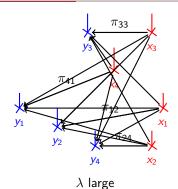
Basic idea:

• Let $E: \mathbb{R}^{N \times N} \to \mathbb{R}$ be the entropy

$$E(\pi) \coloneqq egin{cases} -\sum_{i,j=1}^N \pi_{ij} \log(\pi_{ij}), & \pi \in \mathbb{R}^{N imes N}_+ \ +\infty, & ext{else.} \end{cases}$$

For $\lambda > 0$, find the (*unique*) entropy regularized transport plan

$$\pi_{\lambda}(\mathbf{r}, \mathbf{s}) = \operatorname*{argmin}_{\pi \in \Pi(\mathbf{r}, \mathbf{s})} \sum_{i, j=1}^{N} d^{p}(\mathbf{x}_{i}, \mathbf{x}_{j}) \pi_{ij} - \lambda E(\pi) \,.$$



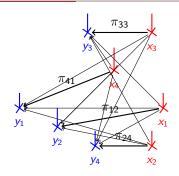
Basic idea:

• Let $E: \mathbb{R}^{N \times N} \to \mathbb{R}$ be the entropy

$$E(\pi) \coloneqq egin{cases} -\sum_{i,j=1}^{N} \pi_{ij} \log(\pi_{ij}), & \pi \in \mathbb{R}^{N imes N}_+ \ +\infty, & ext{else.} \end{cases}$$

■ For $\lambda > 0$, find the (*unique*) entropy regularized transport plan

$$\pi_{\lambda}(\mathbf{r},\mathbf{s}) = \operatorname*{argmin}_{\pi \in \Pi(\mathbf{r},\mathbf{s})} \sum_{i,j=1}^{N} d^{p}(x_{i},x_{j})\pi_{ij} - \lambda E(\pi) \,.$$



 λ intermediate

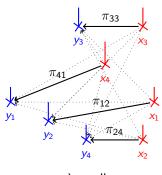
Basic idea:

• Let $E: \mathbb{R}^{N \times N} \to \mathbb{R}$ be the entropy

$$E(\pi) \coloneqq egin{cases} -\sum_{i,j=1}^N \pi_{ij} \log(\pi_{ij}), & \pi \in \mathbb{R}^{N imes N}_+ \ +\infty, & ext{else.} \end{cases}$$

For $\lambda > 0$, find the (*unique*) entropy regularized transport plan

$$\pi_{\lambda}(\mathbf{r},\mathbf{s}) = \operatorname*{argmin}_{\pi \in \Pi(\mathbf{r},\mathbf{s})} \sum_{i,j=1}^{N} d^{p}(x_{i},x_{j})\pi_{ij} - \lambda E(\pi) \,.$$



 λ small

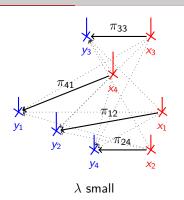
Basic idea:

• Let $E: \mathbb{R}^{N \times N} \to \mathbb{R}$ be the entropy

$$E(\pi) \coloneqq egin{cases} -\sum_{i,j=1}^{N} \pi_{ij} \log(\pi_{ij}), & \pi \in \mathbb{R}^{N imes N}_+ \ +\infty, & ext{else.} \end{cases}$$

For $\lambda > 0$, find the (*unique*) entropy regularized transport plan

$$\pi_{\lambda}(\mathbf{r},\mathbf{s}) = \operatorname*{argmin}_{\pi \in \Pi(\mathbf{r},\mathbf{s})} \sum_{i,j=1}^{N} d^{p}(x_{i},x_{j})\pi_{ij} - \lambda E(\pi) \,.$$



Basic idea:

• Let $E: \mathbb{R}^{N \times N} \to \mathbb{R}$ be the entropy

$$E(\pi) \coloneqq egin{cases} -\sum_{i,j=1}^N \pi_{ij} \log(\pi_{ij}), & \pi \in \mathbb{R}^{N imes N}_+ \ +\infty, & ext{else.} \end{cases}$$

■ For $\lambda > 0$, find the (*unique*) entropy regularized transport plan

$$\pi_{\lambda}(\mathbf{r}, \mathbf{s}) = \operatorname*{argmin}_{\pi \in \Pi(\mathbf{r}, \mathbf{s})} \sum_{i,j=1}^{N} d^{p}(\mathbf{x}_{i}, \mathbf{x}_{j}) \pi_{ij} - \lambda E(\pi) \,.$$

Regularized Wasserstein distance

For $\lambda > 0$, define the regularized Wasserstein distance as

$$W_{\lambda,p}(\mathbf{r},\mathbf{s}) := \left\{ \sum_{i,j=1}^{N} d^{p}(x_{i},x_{j}) \pi_{\lambda}(\mathbf{r},\mathbf{s})_{ij} \right\}^{1/p}$$

Why entropic regularization?

$$\min_{\pi\in\Pi(\mathbf{r},s)}\sum_{i,j=1}^{N}d^{p}(x_{i},x_{j})\pi_{ij}-\lambda E(\pi)$$
(1)

Introducing two dual variables $f,g\in\mathbb{R}^N$ for each marginal constraint, the Lagrangian of (1) reads

$$\mathcal{L}(\pi, \mathbf{f}, \mathbf{g}) = \langle \pi, d^{\mathbf{p}} \rangle - \lambda E(\pi) - \langle \mathbf{f}, \pi \mathbb{1}_{N} - \mathbf{r} \rangle - \langle \mathbf{g}, \pi^{\mathsf{T}} \mathbb{1}_{N} - \mathbf{s} \rangle.$$

Why entropic regularization?

$$\min_{\pi\in\Pi(\mathbf{r},s)}\sum_{i,j=1}^{N}d^{p}(x_{i},x_{j})\pi_{ij}-\lambda E(\pi)$$
(1)

Introducing two dual variables $f,g\in\mathbb{R}^N$ for each marginal constraint, the Lagrangian of (1) reads

$$\mathcal{L}(\pi, \mathbf{f}, \mathbf{g}) = \langle \pi, d^{\mathbf{p}} \rangle - \lambda E(\pi) - \langle \mathbf{f}, \pi \mathbb{1}_{N} - \mathbf{r} \rangle - \langle \mathbf{g}, \pi^{\mathsf{T}} \mathbb{1}_{N} - \mathbf{s} \rangle.$$

Considering first order conditions results in

$$\pi = \mathsf{diag}(\textit{u}) \, \mathsf{K} \, \mathsf{diag}(\textit{v})$$

with

$$u \coloneqq \exp\left(\frac{f}{\lambda}\right), \ K \coloneqq \exp\left(-\frac{d^p}{\lambda}\right), \ v \coloneqq \exp\left(\frac{g}{\lambda}\right)$$

The dual variables u, v must satisfy the following equations which correspond to the mass conservation constraints inherent to $\Pi(r, s)$,

 $\operatorname{diag}(u) \operatorname{K} \operatorname{diag}(v) \mathbb{1}_N = r, \quad \operatorname{diag}(v) \operatorname{K}^T \operatorname{diag}(u) \mathbb{1}_N = s.$

The dual variables u, v must satisfy the following equations which correspond to the mass conservation constraints inherent to $\Pi(r, s)$,

$$\operatorname{diag}(u) \operatorname{K} \operatorname{diag}(v) \mathbb{1}_N = r, \quad \operatorname{diag}(v) \operatorname{K}^T \operatorname{diag}(u) \mathbb{1}_N = s.$$

That problem is known as the matrix scaling problem and is solved iteratively, starting with $v^{(0)} = \mathbbm{1}_N$ and updates

$$u^{(l+1)} := \frac{r}{Kv^{(l)}}, \quad v^{(l+1)} := \frac{s}{K^T u^{(l+1)}}.$$

These updates define **Sinkhorn's algorithm**.

Let $\mathcal{X} = \{x_1, \ldots, x_N\}$ be a finite space with metric $d : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$. Assume, we only have access to the measure r through its corresponding empirical version

$$\hat{\mathbf{r}}_{\mathbf{n}} = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}$$

derived by a sample of \mathcal{X} -valued random variables $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} r$.

Let $\mathcal{X} = \{x_1, \ldots, x_N\}$ be a finite space with metric $d : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$. Assume, we only have access to the measure r through its corresponding empirical version

$$\hat{\mathbf{r}}_{\mathbf{n}} = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}$$

derived by a sample of \mathcal{X} -valued random variables $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} r$.

Central question:

How do the random quantities $\pi_{\lambda}(\hat{\mathbf{r}}_n, \mathbf{s})$ and $W_{\lambda,p}(\hat{\mathbf{r}}_n, \mathbf{s})$ relate to $\pi_{\lambda}(\mathbf{r}, \mathbf{s})$ and $W_{\lambda,p}(\mathbf{r}, \mathbf{s})$, respectively?

The empirical regularized transport plan is defined as

$$\pi_{\lambda}(\hat{\mathbf{r}}_{n}, \mathbf{s}) = \arg\min_{\pi \in \Pi(\hat{\mathbf{r}}_{n}, \mathbf{s})} \sum_{i,j=1}^{N} d^{p}(x_{i}, x_{j}) \pi_{ij} - \lambda E(\pi).$$

The empirical regularized transport plan is defined as

$$\pi_{\lambda}(\hat{\mathbf{r}}_{n}, \mathbf{s}) = \arg\min_{\pi \in \Pi(\hat{\mathbf{r}}_{n}, \mathbf{s})} \sum_{i,j=1}^{N} d^{p}(\mathbf{x}_{i}, \mathbf{x}_{j}) \pi_{ij} - \lambda E(\pi).$$

Theorem (K., Tameling & Munk (2018+)) With the sample size *n* approaching infinity, it holds for r = s and $r \neq s$ that

$$\sqrt{n}\left\{\pi_{\lambda}(\hat{\boldsymbol{r}}_{\boldsymbol{n}},\boldsymbol{s})-\pi_{\lambda}(\boldsymbol{r},\boldsymbol{s})\right\} \stackrel{\mathfrak{D}}{\longrightarrow} \mathcal{N}_{N^{2}}(\boldsymbol{0},\boldsymbol{\Sigma}_{\lambda}(\boldsymbol{r}|\boldsymbol{s})).$$

The empirical regularized transport plan is defined as

$$\pi_{\lambda}(\hat{\mathbf{r}}_{n}, \mathbf{s}) = \arg\min_{\pi \in \Pi(\hat{\mathbf{r}}_{n}, \mathbf{s})} \sum_{i,j=1}^{N} d^{p}(\mathbf{x}_{i}, \mathbf{x}_{j}) \pi_{ij} - \lambda E(\pi).$$

Theorem (K., Tameling & Munk (2018+)) With the sample size *n* approaching infinity, it holds for r = s and $r \neq s$ that

$$\sqrt{n}\left\{\pi_{\lambda}(\hat{\boldsymbol{r}}_{\boldsymbol{n}},\boldsymbol{s})-\pi_{\lambda}(\boldsymbol{r},\boldsymbol{s})\right\} \stackrel{\mathfrak{D}}{\longrightarrow} \mathcal{N}_{N^{2}}(0,\Sigma_{\lambda}(\boldsymbol{r}|\boldsymbol{s})).$$

Remark

Limit distributions for the (non-regularized) transport plan ($\lambda = 0$) are not known.

• We think of $\pi_{\lambda}(\mathbf{r}, \mathbf{s})$ as a vector and consider the **functional**

$$\phi_{\lambda} \colon (\mathbf{r}, \mathbf{s}) \mapsto \operatorname*{arg\ min}_{\pi \in \mathbb{R}^{N^2}} \langle d^{p}, \pi \rangle - \lambda E(\pi)$$

s.t. $A_{\star} \pi = \begin{bmatrix} \mathbf{r} & \mathbf{s}_{\star} \end{bmatrix}^{T}$.

Advantage to (non-regularized) OT: Uniqueness of $\pi_{\lambda}(\mathbf{r}, \mathbf{s})$

• We think of $\pi_{\lambda}(\mathbf{r}, \mathbf{s})$ as a vector and consider the **functional**

$$egin{aligned} \phi_{\lambda} \colon (\mathbf{r}, \mathbf{s}) &\mapsto rgmin_{\pi \in \mathbb{R}^{N^2}} & \langle d^p, \pi
angle - \lambda E(\pi) \ & ext{s.t.} \quad A_{\star} \pi = \left[\mathbf{r}, \, \mathbf{s_{\star}}
ight]^T \,. \end{aligned}$$

Advantage to (non-regularized) OT: Uniqueness of $\pi_{\lambda}(\mathbf{r}, \mathbf{s})$

Sensitivity analysis of the optimal solution

• We think of $\pi_{\lambda}(\mathbf{r}, \mathbf{s})$ as a vector and consider the **functional**

$$\phi_{\lambda} \colon (\mathbf{r}, \mathbf{s}) \mapsto \operatorname*{arg\ min}_{\pi \in \mathbb{R}^{N^2}} \langle d^p, \pi \rangle - \lambda E(\pi)$$

s.t. $A_{\star} \pi = \begin{bmatrix} \mathbf{r} \ , \ \mathbf{s}_{\star} \end{bmatrix}^T$.

Advantage to (non-regularized) OT: Uniqueness of $\pi_{\lambda}(\mathbf{r}, \mathbf{s})$

Sensitivity analysis of the optimal solution

- \triangleright State optimality conditions for $\pi_{\lambda}(\mathbf{r}, \mathbf{s})$ (a.k.a. KKT-conditions)
- > Apply the implicit function theorem
- \Rightarrow The function ϕ_{λ} is **differentiable**

Advantage to (non-regularized) OT: Non-Sparsity of $\pi_{\lambda}(\mathbf{r}, \mathbf{s})$

• We think of $\pi_{\lambda}(\mathbf{r}, \mathbf{s})$ as a vector and consider the **functional**

$$\phi_{\lambda} \colon (\mathbf{r}, \mathbf{s}) \mapsto \operatorname*{arg\ min}_{\pi \in \mathbb{R}^{N^2}} \langle d^p, \pi \rangle - \lambda E(\pi)$$

s.t. $A_{\star} \pi = \begin{bmatrix} \mathbf{r} \ , \ \mathbf{s}_{\star} \end{bmatrix}^T$.

Advantage to (non-regularized) OT: Uniqueness of $\pi_{\lambda}(\mathbf{r}, \mathbf{s})$

Sensitivity analysis of the optimal solution

- \triangleright State optimality conditions for $\pi_{\lambda}(\mathbf{r}, \mathbf{s})$ (a.k.a. KKT-conditions)
- > Apply the implicit function theorem
- \Rightarrow The function ϕ_{λ} is **differentiable**

Advantage to (non-regularized) OT: Non-Sparsity of $\pi_{\lambda}(\mathbf{r}, \mathbf{s})$

Apply (multivariate) delta method

According to the implicit function theorem we obtain that

$$\nabla \phi_{\lambda}(\mathbf{r}, \mathbf{s}) = D A_{\star}^{T} [A_{\star} D A_{\star}^{T}]^{-1}.$$

- A_{\star} is the coefficient matrix encoding the marginal constraints
- **D** is a diagonal matrix with diagonal $\pi_{\lambda}(\mathbf{r}, \mathbf{s})$

According to the implicit function theorem we obtain that

$$\nabla \phi_{\lambda}(\mathbf{r}, \mathbf{s}) = D A_{\star}^{T} [A_{\star} D A_{\star}^{T}]^{-1}.$$

A_{*} is the coefficient matrix encoding the marginal constraints
 D is a diagonal matrix with diagonal π_λ(r, s)

Hence, the (multivariate) delta method tells us that

$$\Sigma_{\lambda}(\boldsymbol{r}|\boldsymbol{s}) = \nabla_{\boldsymbol{r}} \phi_{\lambda}(\boldsymbol{r},\boldsymbol{s}) \Sigma(\boldsymbol{r}) \nabla_{\boldsymbol{r}} \phi_{\lambda}(\boldsymbol{r},\boldsymbol{s})^{T}.$$

The empirical regularized OT-distance is defined as

$$W_{\lambda,p}(\hat{\mathbf{r}}_n, \mathbf{s}) := \left\{ \sum_{i,j=1}^N d^p(x_i, x_j) \pi_\lambda(\hat{\mathbf{r}}_n, \mathbf{s})_{ij} \right\}^{1/p}$$

The empirical regularized OT-distance is defined as

$$W_{\lambda,p}(\hat{\mathbf{r}}_n, \mathbf{s}) := \left\{ \sum_{i,j=1}^N d^p(x_i, x_j) \pi_\lambda(\hat{\mathbf{r}}_n, \mathbf{s})_{ij} \right\}^{1/p}$$

٠

Theorem (K., Tameling & Munk (2018+))

With the sample size n approaching infinity, it holds for r=s and $r\neq s$ that

$$\sqrt{n} \{ W_{\lambda,p}(\hat{\mathbf{r}}_n, \mathbf{s}) - W_{\lambda,p}(\mathbf{r}, \mathbf{s}) \} \stackrel{\mathfrak{D}}{\longrightarrow} \mathcal{N}_1(0, \sigma_{\lambda}^2(\mathbf{r}|\mathbf{s})) \,.$$

Finite sample performance

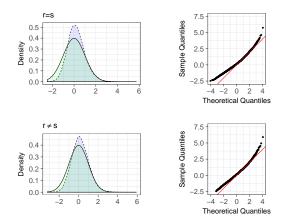


Figure 1: Density and Q-Q-plots in the one-sample case for r = s and $r \neq s$. Comparison of the finite Sinkhorn divergence sample distribution on a regular grid of size 10×10 with regularization parameter $\lambda = 2q_{50}(d)$ and sample sizes n = 25 to the standard normal distribution.

Finite sample performance

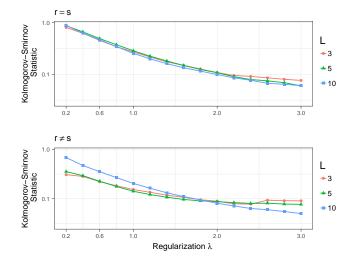
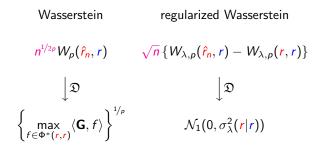


Figure 2: Kolmogorov-Smirnov distance on a logarithmic scale between the finite sample distribution (n = 25) and the theoretical normal distribution averaged over five measures.

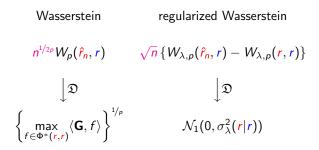
Summary: Wasserstein vs. regularized Wasserstein

Different limit laws under equality of measures (non-normal vs. normal)



Summary: Wasserstein vs. regularized Wasserstein

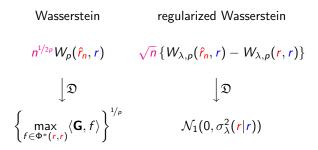
Different limit laws under equality of measures (non-normal vs. normal)



 Different scaling behavior, i.e., for regularized Wasserstein the scaling behavior is independent of p

Summary: Wasserstein vs. regularized Wasserstein

Different limit laws under equality of measures (non-normal vs. normal)



- Different scaling behavior, i.e., for regularized Wasserstein the scaling behavior is independent of p
- Degeneracy, i.e.

$$\lim_{\lambda\searrow 0}\sigma_{\lambda}^{2}(\mathbf{r}|\mathbf{r})=0.$$

- ? Statistical inference (e.g. How to apply the limit law for the regularized transport plan?)
- ? Similar approach for regularized Wasserstein barycenters?