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Computational burden of Wasserstein distances

In general, the computational cost to calculate the Wasserstein distance

Wp(r , s) :=

 min
π∈Π(r ,s)

N∑
i,j=1

dp(xi , yj)πij


1/p

is of order O(N3 log(N)).

There exist some workarounds, e.g.

� Exploiting the underlying metric structure (Ling & Okada (2007))

� Graph sparsification (Pele & Werman (2009))

� Specialized algorithms (Gottschlich & Schuhmacher (2014))

� Subsampling methods (Sommerfeld, Schrieber & Munk (2018))

...

� Regularization methods (Cuturi (2013), Dessein et al. (2016))
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Regularized Wasserstein distance
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Basic idea:

� Let E : RN×N → R be the entropy

E(π) :=

−
∑N

i,j=1 πij log(πij), π ∈ RN×N
+

+∞, else.

� For λ > 0, find the (unique) entropy

regularized transport plan

πλ(r , s) = argmin
π∈Π(r,s)

N∑
i,j=1

dp(xi , xj)πij−λE(π) .

Regularized Wasserstein distance

For λ > 0, define the regularized Wasserstein distance as

Wλ,p(r , s) :=

{
N∑

i,j=1

dp(xi , xj)πλ(r , s)ij

}1/p

.
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Why entropic regularization?

min
π∈Π(r ,s)

N∑
i,j=1

dp(xi , xj)πij − λE (π) (1)

Introducing two dual variables f , g ∈ RN for each marginal constraint,

the Lagrangian of (1) reads

L(π, f , g) = 〈π, dp〉 − λE (π)− 〈f , π1N − r〉 − 〈g , πT
1N − s〉 .

Considering first order conditions results in

π = diag(u)K diag(v)

with

u := exp

(
f

λ

)
, K := exp

(
−dp

λ

)
, v := exp

(g
λ

)
.
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Why entropic regularization?

The dual variables u, v must satisfy the following equations which

correspond to the mass conservation constraints inherent to Π(r , s),

diag(u)K diag(v)1N = r , diag(v)KT diag(u)1N = s .

That problem is known as the matrix scaling problem and is solved

iteratively, starting with v (0) = 1N and updates

u(l+1) :=
r

Kv (l)
, v (l+1) :=

s

KTu(l+1)
.

These updates define Sinkhorn’s algorithm.
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Statistical framework

Let X = {x1, . . . , xN} be a finite space with metric d : X × X → R+.

Assume, we only have access to the measure r through its corresponding

empirical version

r̂n =
1

n

n∑
i=1

δXi

derived by a sample of X -valued random variables X1, . . . ,Xn
i.i.d.∼ r .

Central question:

� How do the random quantities πλ(r̂n, s) and Wλ,p(r̂n, s) relate to

πλ(r , s) and Wλ,p(r , s), respectively?
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Limit laws for empirical regularized transport plans

The empirical regularized transport plan is defined as

πλ(r̂n, s) = arg min
π∈Π(r̂n,s)

N∑
i,j=1

dp(xi , xj)πij − λE (π) .

Theorem (K., Tameling & Munk (2018+))

With the sample size n approaching infinity, it holds for r = s and r 6= s

that √
n {πλ(r̂n, s)− πλ(r , s)} D−→ NN2 (0,Σλ(r |s)) .

Remark

Limit distributions for the (non-regularized) transport plan (λ = 0) are

not known.
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Proof strategy:

� We think of πλ(r , s) as a vector and consider the functional

φλ : (r , s) 7→ arg min
π∈RN2

〈dp,π〉 − λE (π)

s.t. A?π =
[
r , s?

]T
.

Advantage to (non-regularized) OT: Uniqueness of πλ(r , s)

� Sensitivity analysis of the optimal solution

. State optimality conditions for πλ(r , s) (a.k.a. KKT-conditions)

. Apply the implicit function theorem

⇒ The function φλ is differentiable

Advantage to (non-regularized) OT: Non-Sparsity of πλ(r , s)

� Apply (multivariate) delta method
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The covariance matrix Σλ(r |s)

According to the implicit function theorem we obtain that

∇φλ(r , s) = DAT
? [A?D AT

? ]−1 .

� A? is the coefficient matrix encoding the marginal constraints

� D is a diagonal matrix with diagonal πλ(r , s)

Hence, the (multivariate) delta method tells us that

Σλ(r |s) = ∇rφλ(r , s) Σ(r)∇rφλ(r , s)T .
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Limit laws for empirical regularized Wasserstein distances
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Finite sample performance
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Figure 1: Density and Q-Q-plots in the one-sample case for r = s and r 6= s.

Comparison of the finite Sinkhorn divergence sample distribution on a regular grid of

size 10× 10 with regularization parameter λ = 2q50(d) and sample sizes n = 25 to the

standard normal distribution.
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Figure 2: Kolmogorov-Smirnov distance on a logarithmic scale between the finite

sample distribution (n = 25) and the theoretical normal distribution averaged over five

measures.
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Summary: Wasserstein vs. regularized Wasserstein

� Different limit laws under equality of measures (non-normal vs.

normal)

Wasserstein regularized Wasserstein

n1/2pWp(r̂n, r)
√
n {Wλ,p(r̂n, r)−Wλ,p(r , r)}yD yD{

max
f∈Φ∗(r ,r)

〈G, f 〉
}1/p

N1(0, σ2
λ(r |r))

� Different scaling behavior, i.e., for regularized Wasserstein the

scaling behavior is independent of p

� Degeneracy, i.e.

lim
λ↘0

σ2
λ(r |r) = 0 .
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Application and future work

? Statistical inference (e.g. How to apply the limit law for the

regularized transport plan?)

? Similar approach for regularized Wasserstein barycenters?
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