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(Regularized) Optimal Transport in a Nutshell
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(Regularized) Optimal Transport in a Nutshell

The Wasserstein distance of order p > 1 is defined as
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(Regularized) Optimal Transport in a Nutshell

The Wasserstein distance of order p > 1 is defined as

1/p

w€eN(r,s) =

N
Wo(r,s) = min dP(x;, yj)mij
ij=1

In general, the computational cost to calculate the Wasserstein distance is
of order O(N?log(N)). There exist some workarounds and we focus on:

n ‘ Regularization methods‘ (Cuturi (2013), Dessein et al. (2016))
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(Regularized) Optimal Transport in a Nutshell

The Sinkhorn divergence of order p > 1 is defined as
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(Regularized) Optimal Transport in a Nutshell

The Sinkhorn divergence of order p > 1 is defined as

N kG
Woa(r,s) = {Z dP(xi, yi)ma(r, S)U} :

ij=1

= Rates for approximation as A N\, 0 (Luise et al. (2018)):

1
sup [W),\(r,s) = WE(r,s)| < Cexp (/\) .

r,seAy

6/19



Statistical Framework

Let X = {x1,...,xn} be a finite space with metric d : ¥ x X — R,.
Assume, we only have access to the measure r through its corresponding

1L
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n <
i=1
i.i.d.

derived by a sample of X-valued random variables Xi,..., X, "~ r.

empirical version
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Statistical Framework

Let X = {x1,...,xn} be a finite space with metric d : ¥ x X — R,.
Assume, we only have access to the measure r through its corresponding

1L
fp=— E Ox;
n
i=1
i.i.d.

derived by a sample of X-valued random variables Xi,..., X, "~ r.

empirical version

Central question:

= How do the random quantities 7, (7,,s) and W, x(7,, s) relate to
ma(r,s) and W, A(r,s), respectively?
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Limit Law for Regularized Transport Plan

The empirical regularized transport plan is defined as

N

(P, 5) = arg min Z dP(xi, xj)mij — AE(m).
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Limit Law for Regularized Transport Plan

The empirical regularized transport plan is defined as

N

7\ (Fn, ) = arg min Z dP(xi, xj)mij — AE(m).
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Theorem (K., Tameling & Munk (2019))
With the sample size n approaching infinity, it holds for r = s and r # s
that

Vi {ms(Foy ) = ma(r, 8)} = Npe(0, Za(r]s)) -
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Limit Law for Regularized Transport Plan

The empirical regularized transport plan is defined as

N

(P, 5) = arg min dP(xi, xj)mij — AE(m).
TEM(Fn,s)

ij=1
Theorem (K., Tameling & Munk (2019))

With the sample size n approaching infinity, it holds for r = s and r # s
that

Vi {ms(Fy ) — (1, 8)} = Npe (0, Za(r]s)) .
Remark

Limit distributions for the (non-regularized) transport plan (A = 0) are
currently under investigation.
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Limit Law for Sinkhorn Divergence

The empirical Sinkhorn divergence is defined as
1/P
Wp)\ rnv = Zd XI7)<J UDN rm )I

ij=1
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(Non-regularized) OT vs. regularized OT

m Different limit laws under equality of measures (non-Gaussian vs.
Gaussian)

(Non-regularized) OT-distance regularized OT-distance

nTlP Wp(Fn,r) n% {Wp,)\(fnar)_ Wp,)\(r’ r)}
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(Non-regularized) OT vs. regularized OT

m Different limit laws under equality of measures (non-Gaussian vs.

Gaussian)

(Non-regularized) OT-distance regularized OT-distance

% Wo(Fo, 1) s {Wpx(Pay 1) — Wor(r, 1)}

2 2

{max,co- (G, u)} Nl(Oan(r‘f))

T

= Different scaling behaviour, i.e., for regularized OT-distance the
scaling behaviour is independent of p
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(Non-regularized) OT vs. regularized OT

Recall that for A \, 0

sup [W2,(r,5) — WE(r,5)| < Cexp (J) . (1)
r,s€Ay ’ A
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(Non-regularized) OT vs. regularized OT

Recall that for A \, 0

sup [W2,(r,5) — WE(r,5)| < Cexp (ﬁ) . (1)

r,s€Ay
This yields, e.g. for r = s that
\f{ NG *W:A(r r)}

—f{ P (Fay 1) — WR( (P 1)} + /WS (Foy r) — f oa(rr) -
) (1 (1

(i) (1) + (1) = 0 for A(n) € o (Iog ) by (1)

(i) (1) = maxyco- (G, u) by Sommerfeld & Munk (2018)

. o)
= ﬁ{W;A(n)(rn, r)— W:X(n)(r’ r)} — maxyco+{G, u).
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(Non-regularized) OT vs. regularized OT

OT Limit Quantiles

04 08 12 04 08 12 16 04 08 12 04 08 12 16
Ao =0.1 Sinkhorn Quantiles Ao =0.05 Sinkhorn Quantiles

(a) (b)

Figure 1: Comparison of the finite sample distribution (r = s, n = 25) of the
empirical Sinkhorn divergence to the OT limit law on an equidistant grid of size
L =10 for Ao = 0.1 (a) and Ao = 0.05 (b).
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Application: Colocalization Analysis

(a) ATP Synthase (b) MIC60

Figure 2: Staining of two different proteins (Jakobs lab, Department of
NanoBiophotonics, Max-Planck Institute for Biophysical Chemistry, Géttingen)

Aim: Analyse the interaction between fluorescently-labeled molecules by
quantifying the co-occurrence and correlation between them.
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Application: Colocalization Analysis

Conventional methods:

= Pixel based intensity correlation analysis (Pearson’s correlation
coefficient) or co-occurence (Manders’ split coefficients)
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Application: Colocalization Analysis

Conventional methods:

= Pixel based intensity correlation analysis (Pearson’s correlation
coefficient) or co-occurence (Manders’ split coefficients)
m These methods are very sensitive to the resolution of the images

to be compared.

Confocal Image

Sample / .
" Fluorescent
Protein 1
rotein 13880 Reporter A

. Fluorescent STED Image
Protein 2ig) Roporter B 9

.

Figure 3: Simulation of Confocal and STED images of two proteins
which are located at a distance of 45 nm. The resolution of the confocal
image is 244 nm and for the STED image it is 40 nm.
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Application: Colocalization Analysis

Our approach:

m Colocalization measure RCol based on (regularized) optimal
transport for t € [0, diam(X)]

N
RCol(7(r, s) Z s);1{d"(xi,x) < t}.
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Application: Colocalization Analysis

Our approach:

m Colocalization measure RCol based on (regularized) optimal
transport for t € [0, diam(X)]

N
RCol(7(r, s) Z s);1{d"(xi,x) < t}.

Theorem (K., Tameling & Munk (2019))

Let RCol, := RCol(7x(,,s)) be the empirical regularized colocalization.

As n — oo it holds that
Jn {E&\o/n . RCol} 2, RCol(G)

with G the random variable with distribution given by the limit law for
the empirical regularized transport plan.
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Application: Colocalization Analysis

m This yields 1 — « approximate uniform confidence bands, i.e.
lim,_ o P(RCol € Z,) = 1 — «, where

uj— — uq_ —
7, = |-——2 4 RCol,, —< + RCol,

Vn Vn

and uj_,, is the 1 — « quantile from the distribution of ||RCol(G)|| -

m The quantile u;_, can be consistently approximated by its n out of
n bootstrap analogue.
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Application: Colocalization Analysis

(a) ATP Synthase (b) MIC60

Figure 4: Staining of two different proteins: Image size 666 x 666 pixels,
pixel size = 15nm. Middle: Zoom ins (128 x 128 pixels).
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Application: Colocalization Analysis
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Figure 5: Staining of ATP Synthase and MIC60 for the zoom ins
(128 x 128 images).The sampled regularized colocalization (A = 0.01) (solid
blue line, subsampling n = 2000) with bootstrap confidence bands (gray area
between dashed blue lines) based on the n out of n bootstrap with B = 100
replications and a = 0.05. Red solid line: Population regularized colocalization.
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Summary

m Limit laws for the empirical regularized optimal transport plan and
its corresponding Sinkhorn divergence.

m Consistency of the n out of n bootstrap.
= The results hold for more general regularizers.

s Comparison to related results for (non-regularized) optimal
transport.

= Application to Colocalization analysis.
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