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(Regularized) Optimal Transport in a Nutshell
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

Finite discrete metric space (X , d)

� Given two probability measures

r =
N∑
i=1

riδxi , s =
N∑
j=1

sjδyj

� Transport costs dp(xi , yj) for p ≥ 1

� Find the most efficient way to transport

measure r into s.

� Solve the standard linear program

min
π∈RN×N

N∑
i,j=1

dp(xi , yj)πij

s.t. π1N = r , πT
1N = s

π ≥ 0 .
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(Regularized) Optimal Transport in a Nutshell

The Wasserstein distance of order p ≥ 1 is defined as

Wp(r , s) :=

 min
π∈Π(r ,s)

N∑
i,j=1

dp(xi , yj)πij


1/p

.

In general, the computational cost to calculate the Wasserstein distance is

of order O(N3 log(N)). There exist some workarounds and we focus on:

� Regularization methods (Cuturi (2013), Dessein et al. (2016))
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Finite discrete metric space (X , d)

� Given two probability measures

r =
N∑
i=1

riδxi , s =
N∑
j=1

sjδyj

� Transport costs dp(xi , yj) for p ≥ 1

� Entropy: E(π) = −
∑N

i,j=1 πij log(πij)

� For λ > 0 find the (unique) entropy

regularized transport plan

πλ(r , s) = argmin
π∈Π(r,s)

N∑
i,j=1

dp(xi , yj)πij−λE(π) .
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(Regularized) Optimal Transport in a Nutshell

The Sinkhorn divergence of order p ≥ 1 is defined as

Wp,λ(r , s) :=


N∑

i,j=1

dp(xi , yj)πλ(r , s)ij


1/p

.

� Efficient matrix scaling algorithm (Sinkhorn algorithm) to

approximate πλ(r , s) (Cuturi (2013))

� Rates for approximation (Luise et al. (2018)):

‖πλ(r , s)− π(r , s)‖ ≤ C1 exp

(
− 1

λ

)
,

where π(r , s) = argmax
π∈Π(r ,s)

{E (π), W p
p (r , s) = 〈π, dp(x , y)〉} and

|Wp,λ(r , s)−Wp(r , s)| ≤ C2 exp

(
− 1

λ

)
.
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Statistical Framework

Let X = {x1, . . . , xN} be a finite space with metric d : X × X → R+.

Assume, we only have access to the measure r through its corresponding

empirical version

r̂n =
1

n

n∑
i=1

δXi

derived by a sample of X -valued random variables X1, . . . ,Xn
i.i.d.∼ r .

Central question:

� How do the random quantities πλ(r̂n, s) and Wp,λ(r̂n, s) relate to

πλ(r , s) and Wp,λ(r , s), respectively?
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Limit Law for Regularized Transport Plan

The empirical regularized transport plan is defined as

πλ(r̂n, s) = arg min
π∈Π(r̂n,s)

N∑
i,j=1

dp(xi , xj)πij − λE (π) .

Theorem (K., Tameling & Munk (2019))

With the sample size n approaching infinity, it holds for r = s and r 6= s

that √
n {πλ(r̂n, s)− πλ(r , s)} D−→ NN2 (0,Σλ(r |s)) .

Remark

Limit distributions for the (non-regularized) transport plan (λ = 0) are

not known.
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Limit Law for Sinkhorn Divergence

The empirical Sinkhorn divergence is defined as

Wp,λ(r̂n, s) :=


N∑

i,j=1

dp(xi , xj)πλ(r̂n, s)ij


1/p

.

Theorem (K., Tameling & Munk (2019))

With the sample size n approaching infinity, it holds for r = s and r 6= s

that √
n {Wp,λ(r̂n, s)−Wp,λ(r , s)} D−→ N1(0, σ2

λ(r |s)) .

Remark

Limit laws for Wasserstein (Sommerfeld & Munk (2018)) are in general

not Gaussian, e.g.

n1/2p Wp(r̂n, r)
D−→
{

max
u∈Φ∗
〈G , u〉

}1/p

.
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Application: Colocalization Analysis

(a) ATP Synthase (b) MIC60

Figure 1: Staining of two different proteins (Jakobs lab, Department of

NanoBiophotonics, Max-Planck Institute for Biophysical Chemistry, Göttingen)

Aim: Analyse the interaction between fluorescently-labeled molecules by

quantifying the co-occurrence and correlation between them.
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Application: Colocalization Analysis

Conventional methods:

� Pixel based intensity correlation analysis (Pearson’s correlation

coefficient) or co-occurence (Manders’ split coefficients)

� These methods are very sensitive to the resolution of the images to

be compared.

Figure 2: Simulation of Confocal and STED images of two proteins

which are located at a distance of 45 nm. The resolution of the confocal

image is 244 nm and for the STED image it is 40 nm.
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Application: Colocalization Analysis

Our approach:

� Colocalization measure RCol based on (regularized) optimal

transport for t ∈ [0, diam(X )]

RCol(πλ(r , s))(t) =
N∑

i,j=1

πλ(r , s)ij1{d
p(xi , xj) ≤ t} .

Theorem (K., Tameling & Munk (2019))

Let R̂Coln := RCol(πλ(r̂n, s)) be the empirical regularized colocalization.

As n→∞ it holds that

√
n
{
R̂Coln − RCol

}
D−→ RCol(G )

with G the random variable with distribution given by the limit law for

the empirical regularized transport plan.
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Application: Colocalization Analysis

� This yields 1− α approximate uniform confidence bands, i.e.

limn→∞ P(RCol ∈ In) = 1− α, where

In :=

[
−u1−α√

n
+ R̂Coln,

u1−α√
n

+ R̂Coln

]
and u1−α is the 1−α quantile from the distribution of ‖RCol(G )‖∞.

� The quantile u1−α can be consistently approximated by its n out of

n bootstrap analogue.
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Application: Colocalization Analysis

(a) ATP Synthase (b) MIC60

Figure 3: Staining of two different proteins: Image size 666 × 666 pixels,

pixel size = 15nm. Middle: Zoom ins (128 × 128 pixels).
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Application: Colocalization Analysis
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Figure 4: Staining of ATP Synthase and MIC60 for the zoom ins

(128 × 128 images).The sampled regularized colocalization (λ = 0.01) (solid

blue line, subsampling n = 2000) with bootstrap confidence bands (gray area

between dashed blue lines) based on the n out of n bootstrap with B = 100

replications and α = 0.05. Red solid line: Population regularized colocalization.
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Summary

� Limit laws for the empirical regularized optimal transport plan and

its corresponding Sinkhorn divergence.

� Consistency of the n out of n bootstrap.

� The results hold for more general regularizers.

� Application to Colocalization analysis.
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