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(Regularized) Optimal Transport in a Nutshell
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m Given two probability measures

y3 X3
LT o
r= Z ri0x, S= ZS.J-(Syj
j=1

N Xa )L Py
J( 9 m Transport costs d”(x;, y;) for p > 1
J< V2 J< m Find the most efficient way to transport

Xo Va measure r Into s.

3/16



(Regularized) Optimal Transport in a Nutshell

J< a3 J< Finite discrete metric space (X, d)

m Given two probability measures

J< y3 X3
T41 J( N N
#
=3 e 5= s,
Jj=1

1 Xg

i=1

- J( Ty m Transport costs d”(x;, y;) for p > 1

22

J< V2 m Find the most efficient way to transport
X0 Va measure r Into s.

Transport plan (coupling of r
and s):

3/16



(Regularized) Optimal Transport in a Nutshell

J< a3 J< Finite discrete metric space (X, d)

m Given two probability measures

3 X3
J< T41 J( N N
_

¢ . r:E ri0x; s SIE sj0y;
1 4 J< i—1 =1

- J( Ty m Transport costs d”(x;, y;) for p > 1

22

J< V2 m Find the most efficient way to transport
X0 Va measure r Into s.

Transport plan (coupling of r m Solve the standard linear program

and s): N
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(Regularized) Optimal Transport in a Nutshell

The Wasserstein distance of order p > 1 is defined as

l/p
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(Regularized) Optimal Transport in a Nutshell

The Wasserstein distance of order p > 1 is defined as

1/p

w€eN(r,s) =

N
Wo(r,s) = min dP(x;, yj)mij
ij=1

In general, the computational cost to calculate the Wasserstein distance is
of order O(N?log(N)). There exist some workarounds and we focus on:

n ‘ Regularization methods‘ (Cuturi (2013), Dessein et al. (2016))
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(Regularized) Optimal Transport in a Nutshell
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m Entropy: E(7w) = — Zﬁljzl mij log(mi)
m For A > 0 find the (unique) entropy
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(Regularized) Optimal Transport in a Nutshell

The Sinkhorn divergence of order p > 1 is defined as

N e
Wor(r,5) = {Z df’(x,-,y,-)mr,s)y} -

ij=1
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(Regularized) Optimal Transport in a Nutshell

The Sinkhorn divergence of order p > 1 is defined as

Yp

N
Wor(r,s) =< > d®(x,y)ma(r,8)j
ij=1

m Efficient matrix scaling algorithm (Sinkhorn algorithm) to
approximate 7, (r, s) (Cuturi (2013))
m Rates for approximation (Luise et al. (2018)):

||ﬂ'/\(f,5) — 7T(f7S)H < Cl exp <_i'\> ,

where 7(r,s) = argmax{E(r), Wp(r,s) = (m,dP(x,y))} and
wel(r,s)

1
\Wjr(r,s) — Wy(r,s)| < Grexp (A) .
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Statistical Framework

Let X = {x1,...,xn} be a finite space with metric d : ¥ x X — R,.
Assume, we only have access to the measure r through its corresponding

1L
f=- E Ox;
n
i=1
i.i.d.

derived by a sample of X-valued random variables Xi,..., X, "~ r.

empirical version
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Statistical Framework

Let X = {x1,...,xn} be a finite space with metric d : ¥ x X — R,.
Assume, we only have access to the measure r through its corresponding

1L
fp=— E Ox;
n
i=1
i.i.d.

derived by a sample of X-valued random variables Xi,..., X, "~ r.

empirical version

Central question:

= How do the random quantities 7, (7,,s) and W, x(7,, s) relate to
ma(r,s) and W, A(r,s), respectively?
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Limit Law for Regularized Transport Plan

The empirical regularized transport plan is defined as

N
7\ (Fn, ) = arg min Z dP(xi, xj)mij — AE(m).

LS ) ij=1
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Limit Law for Regularized Transport Plan

The empirical regularized transport plan is defined as

N

(P, 5) = arg min Z dP(xi, xj)mij — AE(m).

ﬂen(&ﬁ)ijzl

Theorem (K., Tameling & Munk (2019))
With the sample size n approaching infinity, it holds for r = s and r # s
that
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Limit Law for Regularized Transport Plan

The empirical regularized transport plan is defined as

N

(P, 5) = arg min Z dP(xi, xj)mij — AE(m).
LS )

ij=1
Theorem (K., Tameling & Munk (2019))

With the sample size n approaching infinity, it holds for r = s and r # s
that

V{7 (Fy ) — (1, 8)} = Npe(0, Za(r]s)) -
Remark

Limit distributions for the (non-regularized) transport plan (A = 0) are
not known.
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Limit Law for Sinkhorn Divergence

The empirical Sinkhorn divergence is defined as
1/p

N
Wo A(Fn, s) = Z dP(xi, x;)m\(Fn, 5)ij

ij=1
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Limit Law for Sinkhorn Divergence

The empirical Sinkhorn divergence is defined as
N e
Wo A(Fn, s) = Z dP(xi, x;)m\(Fn, 5)ij

ij=1

Theorem (K., Tameling & Munk (2019))
With the sample size n approaching infinity, it holds for r = s and r # s
that

Vi {Wor(Fa $) = Wp(r;5)} =2 N (0,03(r15))
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Limit Law for Sinkhorn Divergence

The empirical Sinkhorn divergence is defined as
N e
Wor(Frs) = > dP(xi,x)ma(Fn, )5
ij=1
Theorem (K., Tameling & Munk (2019))

With the sample size n approaching infinity, it holds for r = s and r # s
that

VI { Wy a(Fay5) — Wpa(r,s)} — N1(0,03(r]s)).

Remark

Limit laws for Wasserstein (Sommerfeld & Munk (2018)) are in general
not Gaussian, e.g.

1/p
/2P W (7o, 1) 2, {D;%)“G’ u>} .
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Application: Colocalization Analysis

(a) ATP Synthase (b) MIC60

Figure 1: Staining of two different proteins (Jakobs lab, Department of
NanoBiophotonics, Max-Planck Institute for Biophysical Chemistry, Géttingen)

Aim: Analyse the interaction between fluorescently-labeled molecules by
quantifying the co-occurrence and correlation between them.
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Application: Colocalization Analysis

Conventional methods:

= Pixel based intensity correlation analysis (Pearson’s correlation
coefficient) or co-occurence (Manders’ split coefficients)
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Application: Colocalization Analysis

Conventional methods:

= Pixel based intensity correlation analysis (Pearson’s correlation
coefficient) or co-occurence (Manders’ split coefficients)
m These methods are very sensitive to the resolution of the images to

be compared.

Confocal Image

Sample / .
" Fluorescent
Protein 1
rotein 13880 Reporter A

. Fluorescent STED Image
Protein 2ig) Roporter B 9

.

Figure 2: Simulation of Confocal and STED images of two proteins
which are located at a distance of 45 nm. The resolution of the confocal
image is 244 nm and for the STED image it is 40 nm.
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Application: Colocalization Analysis

Our approach:

m Colocalization measure RCol based on (regularized) optimal
transport for t € [0, diam(X)]

N
RCol(7(r, s) Z s);1{d"(xi,x) < t}.
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Application: Colocalization Analysis

Our approach:

m Colocalization measure RCol based on (regularized) optimal
transport for t € [0, diam(X)]

N
RCol(7(r, s) Z s);1{d"(xi,x) < t}.

Theorem (K., Tameling & Munk (2019))

Let RCol, := RCol(7x(,,s)) be the empirical regularized colocalization.

As n — oo it holds that
Jn {E&\o/n . RCol} 2, RCol(G)

with G the random variable with distribution given by the limit law for
the empirical regularized transport plan.
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Application: Colocalization Analysis

m This yields 1 — « approximate uniform confidence bands, i.e.
lim,_ o P(RCol € Z,) = 1 — «, where

uj— — uq_ —
7, = |-——2 4 RCol,, —< + RCol,

Vn Vn

and uj_,, is the 1 — « quantile from the distribution of ||RCol(G)|| -

m The quantile u;_, can be consistently approximated by its n out of
n bootstrap analogue.
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Application: Colocalization Analysis

(a) ATP Synthase (b) MIC60

Figure 3: Staining of two different proteins: Image size 666 x 666 pixels,
pixel size = 15nm. Middle: Zoom ins (128 x 128 pixels).
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Application: Colocalization Analysis
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Figure 4: Staining of ATP Synthase and MIC60 for the zoom ins
(128 x 128 images).The sampled regularized colocalization (A = 0.01) (solid
blue line, subsampling n = 2000) with bootstrap confidence bands (gray area
between dashed blue lines) based on the n out of n bootstrap with B = 100
replications and a = 0.05. Red solid line: Population regularized colocalization.
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Summary

= Limit laws for the empirical regularized optimal transport plan and
its corresponding Sinkhorn divergence.

= Consistency of the n out of n bootstrap.
m The results hold for more general regularizers.

Application to Colocalization analysis.
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