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(Empirical) optimal transport

Statistical framework:

(i) Let (X,d) be a Polish metric space, p € [1,+00) and p, v two
probability measures on X'. The optimal transport distance
(OT-distance a.k.a. pth-Wasserstein distance) between 1 and v is

defined as

W)= {_min [ aey) dw(x,m}% .

eN(u,v)



(Empirical) optimal transport

Statistical framework:

(i) Let (X,d) be a Polish metric space, p € [1,+00) and p, v two
probability measures on X'. The optimal transport distance
(OT-distance a.k.a. pth-Wasserstein distance) between 1 and v is

defined as

W)= {_min [ aey) dw(x,m}% .

eN(u,v)

(ii) The empirical OT-distance is defined as
Wo(fin, v)

(resp. Wy (fin, 0m)), where the empirical measure /i, (resp. 7p,) is
generated by a sample Xy, ..., X, "% 1 (resp. Yi,..., Y K 0).



Central question for (empirical) OT-distances

How does the random quantity W, (i, ) relate to W,(u,v)?
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= Rates of convergence and concentration results for the empirical
OT-distance

> del Barrio & Matrdn (2013) > Fournier & Guilin (2014)
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m | Distributional limits for the empirical OT—distance‘

> Dimension D =1 (R, the real line):
o Munk & Czado (1998)
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o Freitag & Munk (2005)
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= Rates of convergence and concentration results for the empirical
OT-distance

> del Barrio & Matrdn (2013) > Fournier & Guilin (2014)
> Boissard & Le Gouic (2014) > Weed & Bach (2017)

m | Distributional limits for the empirical OT—distance‘

> Dimension D =1 (R, the real line):

o Munk & Czado (1998)
o del Barrio et al. (1999, 2005, 2015)
o Freitag & Munk (2005)

> Dimension D > 2 (RP):
o elliptical distributions: Rippl et al. (2016)
o general results for i # v: del Barrio & Loubes (2017)
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Optimal transport on finite metric spaces

Let X = {x1,...,xn} be a finite space with metric d : X x X — R, and

N
Ay ={reRY | > n=1}
i=1

be the N-dimensional simplex of probability measures on X.
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Optimal transport on finite metric spaces

Let X = {x1,...,xn} be a finite space with metric d : X x X — R, and

N
Ay ={reRY | > n=1}
i=1

be the N-dimensional simplex of probability measures on X'.The
OT-distance between r,s € Ay is given by the optimal value of a finite
dimensional linear program, i.e.,

1/p

Wo(r,s) = min E dP(xi, yj)mij ,
w€el(r,s) ! 1
ij=

where the feasible set in a finite setting is given by

n(r, s)—{TrERNXN| Zﬂ'u =, ZT(U =si}.

j=1
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Limit laws for finite metric spaces

Theorem (Sommerfeld & Munk (2017))
With the sample size n approaching infinity, it holds that

u One sample (r = s):

1/p
nl/szp(F,,, r) — {f mq) a(x )((;, f>}
cP*(r,r

m 7, empirical measure generated by Xi,..., X, ~ ' r
m ®*(r,s) set of dual solutions
m G the Gaussian limit of \/n(#, — r)
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Limit laws for finite metric spaces

Theorem (Sommerfeld & Munk (2017))
With the sample size n approaching infinity, it holds that

u One sample (r = s):
l/p
n’? W, (Fay 1) 2, max (G, f)
PR fed*(r,r) ’

m One sample (r # s):

\/E{Wp(fn,s)_w,,(r,s)}&l pl_p(r,s){ max <G,f>}

p fed*(r,s)

m 7, empirical measure generated by Xi,..., X, ~ ' r
m ®*(r,s) set of dual solutions
m G the Gaussian limit of \/n(#, — r)
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Limit laws for empirical OT-distances

Proof strategy:

= Consider the OT-distance as the optimal value of a finite
dimensional linear program

(r,s) — min E d?(xi, x;)mij -
7€el(r,s) : 1
ij=
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Proof strategy:

= Consider the OT-distance as the optimal value of a finite
dimensional linear program

(r,s) — min Zd (X1, Xj)mij -

7€el(r,s) :

= Prove that this functional is directionally Hadamard
differentiable (Gal & Greenberg (1997))

m Apply (generalized) delta method (Romisch (2004))
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Limit laws for empirical OT-distances — Extensions

m Can be extended to W(7,, 5n)
m Explicit limit distributions, e.g. for tree metrics, non-degeneracy

m m out of n bootstrap (need m = o(n); n out of n bootstrap fails)
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Limit laws for empirical OT-distances — Extensions

m Can be extended to W(7,, 5n)

Explicit limit distributions, e.g. for tree metrics, non-degeneracy
m m out of n bootstrap (need m = o(n); n out of n bootstrap fails)

m Limit laws for countable metric spaces X = {x1, x2, ...} (Tameling,
Sommerfeld & Munk (2017))
> requires a careful calibration of the norm
> only for measures r with Y2, dP(x;, x0)\/Ti < 00, where
Xp € X arbitrary
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Computational burden of OT-distances

In general, the computational cost to calculate the OT-distance

N e
Wolr.s) =4 min 2 40y
S i=1

is of order O(N3log(N)).
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is of order O(N3log(N)).
Workarounds:

m Exploiting the underlying metric structure (Ling & Okada (2007))
m Graph sparsification (Pele & Werman (2009))

m Specialized algorithms, e.g. shortlist (Gottschlich & Schuhmacher
(2014)), shielding neighborhood (Schmitzer (2016))

m Subsampling methods (Sommerfeld, Schrieber & Munk (2018))
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In general, the computational cost to calculate the OT-distance

N e
Wolr.s) =4 min 2 40y
S i=1

is of order O(N3log(N)).
Workarounds:

m Exploiting the underlying metric structure (Ling & Okada (2007))
Graph sparsification (Pele & Werman (2009))

Specialized algorithms, e.g. shortlist (Gottschlich & Schuhmacher
(2014)), shielding neighborhood (Schmitzer (2016))

Subsampling methods (Sommerfeld, Schrieber & Munk (2018))
‘ Regularization methods‘ (Cuturi (2013), Dessein et al. (2016))
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Regularized optimal transport

Let f: RV*N 5 R be the negative entropy

N NxN
Flr) = >ijer i log(my)  for me REXM,
+00 otherwise.
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Regularized optimal transport

Let f: RV*N 5 R be the negative entropy

Z,{V.Zl mijlog(my) for m € RN,
f(m) = J

+00 otherwise.

For two measures r, s on the finite metric space X = {xy,...,xy} and
A > 0 find the regularized transport plan

N
7a(r,s) = arg min Z dP(xi, xj)mij + A f(m).

7€el(r,s) ij=1
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Regularized optimal transport

Let f: RV*N 5 R be the negative entropy

N NxN
Flr) = >ijer i log(my)  for me REXM,
+00 otherwise.

For two measures r, s on the finite metric space X = {xy,...,xy} and
A > 0 find the regularized transport plan

N

7a(r,s) = arg min Z dP(xi, xj)mij + A f(m).

7€el(r,s) ij=1

Define the regularized OT-distance (a.k.a. Sinkhorn divergence, rot
mover's distance) as
N e
Won(r,s) = 4 3 dP(x,x)ma (1, 5);

ij=1
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Limit laws for empirical regularized transport plans

The empirical regularized transport plan is defined as

N
72 (Fp, 5) = arg min Z dP(xi, xj)mjj + A (7).

weN(f,s) ij=1
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Limit laws for empirical regularized transport plans

The empirical regularized transport plan is defined as

N
72 (Fp, 5) = arg min Z dP(xi, xj)mjj + A (7).

weN(f,s) ij=1

Theorem (K., Tameling & Munk (2018))

With the sample size n approaching infinity, it holds for r = s and r # s
that

Vi {ma(For 5) — ma(r, 8)} = Npe(0, Za(r]s)) -

10/19



Limit laws for empirical regularized transport plans

The empirical regularized transport plan is defined as

N

7 (Fn, s) = arg min Z dP(xi, xj)mjj + A (7).

weN(f,s) ij=1

Theorem (K., Tameling & Munk (2018))

With the sample size n approaching infinity, it holds for r = s and r # s
that

Vi {ma(For 5) — ma(r, 8)} = Npe(0, Za(r]s)) -

Remark

Limit distributions for the (nonregularized) transport plan (A = 0) are
not known.
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Proof strategy:

m We think of 7,(r, s) as a vector and consider the functional

ox: (r,s) — arg min (dP,m) + \f(7)

TERN?

T
s.t. A= [r7 5*} .

Advantage to (nonregularized) OT: ‘ Uniqueness of 7,(r, s) ‘
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m We think of 7,(r, s) as a vector and consider the functional

ox: (r,s) — arg min (dP,m) + \f(7)

TERN?

T
s.t. A= [r7 5*} .

Advantage to (nonregularized) OT: ‘ Uniqueness of m)(r,s) ‘

m Sensitivity analysis of the optimal solution (Fiacco (1983)):

> State optimality conditions for 7, (r, s) (a.k.a. KKT-conditions)
> Apply the implicit function theorem
= The function ¢, is differentiable

Advantage to (nonregularized) OT: ‘ Non-Sparsity of 7,(r,s) ‘

m Apply (multivariate) delta method (van der Vaart (2000))
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The covariance matrix X ,(r|s)

According to the implicit function theorem we obtain that
Vor(r,s)=DA][A. DA™,

m A, is the coefficient matrix encoding the marginal constraints

m D is a diagonal matrix with diagonal 7,(r, s)
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The covariance matrix X ,(r|s)

According to the implicit function theorem we obtain that
Vor(r,s)=DA][A. DA™,

m A, is the coefficient matrix encoding the marginal constraints

m D is a diagonal matrix with diagonal 7,(r, s)

Hence, the (multivariate) delta method tells us that

Z)\(r|5) = vr¢A(r7 5) Z(I’) Vr¢)\(r7 S)T :
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Limit laws for empirical regularized transport distances

The empirical regularized OT-distance is defined as

N Y

Wi p(Fn, s) = Z dP(xi, x;)m\(Fn, 5)jj
ij=1
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Limit laws for empirical regularized transport distances

The empirical regularized OT-distance is defined as

N e

Wi p(Fn, s) = Z dP(xi, x;)m\(Fn, 5)jj
ij=1

Theorem (K., Tameling & Munk (2018))

With the sample size n approaching infinity, it holds for r = s and r # s
that

VI {Wy p(Fa, 5) = Wi p(r, 5)} — N1(0,03(r]s)).
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Limit laws for empirical regularized transport distances

One can also consider directly the optimal value of the regularized
transport problem, i.e.,

px(r,s) = min Zd (xi, xj)mij + A f(m).

7el(r,s)
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Limit laws for empirical regularized transport distances

One can also consider directly the optimal value of the regularized
transport problem, i.e.,

px(r,s) = min Zd (xi, xj)mij + A f(m).

7el(r,s) i

Theorem (Bigot, Cazelles & Papadakis (2017))

With the sample size n approaching infinity, it holds for r = s and r # s
that

Va{pa(Fry ) — pa(r,5)} = (G, Alog(u))

m The vector u is the left scaling for the regularized transport plan
dr
ma(r,s) = diag(u) exp (—)\> diag(v)

m G the Gaussian limit of \/n(#, — r)
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Speed of convergence

r=s, A = 20so(d) r#s, A =20so(d)

-0.2 0‘.0 0.2 -0.2 0.0 0.2 0.4

Figure 1: Density for the sample distribution (dashed line, n = 10 samples) for
r =s (left) and r # s (right) and the density of the corresponding normal limit (solid
line).
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Speed of convergence

r=s

> 1.0
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Figure 2: Kolmogorov-Smirnov distance on a logarithmic scale between the finite
sample distribution (n = 25) and the theoretical normal distribution averaged over five

measures.
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As a byproduct of the delta method, we obtain consistency of the n
out of n bootstrap:

Theorem (K., Tameling & Munk (2018))
With the sample size n approaching infinity, it holds for r = s and r # s
that

sup [E[h(v/n{W p(7;,5) — Wa p(Fay $)})| X1, - oy Xn)
heBL;(R)

— E[h(\/n { Wi p(Fr, 5) — Wi (r, s) )] == 0.

BLI(R) ={f: R = R|||fllec <1, |f(z1) — f(2)] <|z1 — 2|}

7% bootstrapped version of 7,
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n out of n bootstrap
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that

sup [E[h(vV/n{W p(7;,5) — Wa p(Fay s)})| X1, - oy Xn)
heBL; (R)

— E[h(v/n {Wh p(F, ) — Wap(r,s)})]] — 0.

B BLI(R) ={f: R = R|||f]lec <1, |f(z1) — f(22)| <|z1 — 22|}

m 77 bootstrapped version of 7,
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Limit laws for empirical regularized transport — Extensions

m Limit laws hold for more general regularizers:
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m Limit laws hold for more general regularizers:
Let f be twice continuously differentiable on the interior of its
domain with positive definite Hessian V2f. Moreover, assume that

(A1) f of Legendre type, (A3) (0,1)’\’2 C dom f,
(A2) RV C dom f*, (A4) dom f C RV,
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Limit laws for empirical regularized transport — Extensions

m Limit laws hold for more general regularizers:
Let f be twice continuously differentiable on the interior of its
domain with positive definite Hessian V2f. Moreover, assume that

(A1) f of Legendre type, (A3) (0,1)’\’2 C dom f,
(A2) RV C dom f*, (A4) dom f C RV,

Examples are given by Dessein et al. (2016), e.g.

> Burg entropy: f(7) = Z,Nj:l log(mjj) — mjj — 1

> I, quasi norm: f(7) = ZN-Q:l TP, 0<p<1

ij
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Summary: (nonregularized) OT vs. regularized OT

s Different limit laws under equality of measures (non-normal vs.

normal)

(Nonregularized) OT-distance regularized OT-distance
nl/QpWP(Fmr) ﬁ{WA,p(Fn7r)_ W/\,p(r7 r)}

2 2

{ o (s f>}1/" Ni(0,03(11)

fed*(r,r)
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= Different scaling behavior, i.e., for regularized OT-distance the
scaling behavior is independent of p
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Summary: (nonregularized) OT vs. regularized OT

s Different limit laws under equality of measures (non-normal vs.

normal)
(Nonregularized) OT-distance regularized OT-distance
nl/QpWP(Fmr) ﬁ{WA,p(Pn7r) - W/\,p(r7 r)}
2 2
1/p
{,max &0} M (0,03(r1r)

= Different scaling behavior, i.e., for regularized OT-distance the
scaling behavior is independent of p

= We find that
lim o2(r|r)=0.
ANO
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