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(Empirical) optimal transport

Statistical framework:

(i) Let (X , d) be a Polish metric space, p ∈ [1,+∞) and µ, ν two

probability measures on X . The optimal transport distance

(OT-distance a.k.a. pth-Wasserstein distance) between µ and ν is

defined as

Wp(µ, ν) :=

{
min

π∈Π(µ,ν)

∫
X×X

dp(x , y) dπ(x , y)

}1/p

.

(ii) The empirical OT-distance is defined as

Wp(µ̂n, ν)

(resp. Wp(µ̂n, ν̂m)), where the empirical measure µ̂n (resp. ν̂m) is

generated by a sample X1, . . . ,Xn
i.i.d.∼ µ (resp. Y1, . . . ,Ym

i.i.d.∼ ν).
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Central question for (empirical) OT-distances

How does the random quantity Wp(µ̂n, ν) relate to Wp(µ, ν)?

� Rates of convergence and concentration results for the empirical

OT-distance

. del Barrio & Matrán (2013)

. Boissard & Le Gouic (2014)

. Fournier & Guilin (2014)

. Weed & Bach (2017)

� Distributional limits for the empirical OT-distance

. Dimension D = 1 (R, the real line):

◦ Munk & Czado (1998)

◦ del Barrio et al. (1999, 2005, 2015)

◦ Freitag & Munk (2005)

. Dimension D ≥ 2 (RD):

◦ elliptical distributions: Rippl et al. (2016)

◦ general results for µ 6= ν: del Barrio & Loubes (2017)
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Optimal transport on finite metric spaces

Let X = {x1, . . . , xN} be a finite space with metric d : X ×X → R+ and

∆N := {r ∈ RN
+ |

N∑
i=1

ri = 1}

be the N-dimensional simplex of probability measures on X .The

OT-distance between r , s ∈ ∆N is given by the optimal value of a finite

dimensional linear program, i.e.,

Wp(r , s) :=

 min
π∈Π(r ,s)

N∑
i,j=1

dp(xi , yj)πij


1/p

,

where the feasible set in a finite setting is given by

Π(r , s) = {π ∈ RN×N
+ |

N∑
j=1

πij = ri ,
N∑
i=1

πij = sj} .

4/19



Optimal transport on finite metric spaces

Let X = {x1, . . . , xN} be a finite space with metric d : X ×X → R+ and

∆N := {r ∈ RN
+ |

N∑
i=1

ri = 1}

be the N-dimensional simplex of probability measures on X .The

OT-distance between r , s ∈ ∆N is given by the optimal value of a finite

dimensional linear program, i.e.,

Wp(r , s) :=

 min
π∈Π(r ,s)

N∑
i,j=1

dp(xi , yj)πij


1/p

,

where the feasible set in a finite setting is given by

Π(r , s) = {π ∈ RN×N
+ |

N∑
j=1

πij = ri ,
N∑
i=1

πij = sj} .

4/19



Limit laws for finite metric spaces

Theorem (Sommerfeld & Munk (2017))

With the sample size n approaching infinity, it holds that

� One sample (r = s):

n
1/2pWp(r̂n, r)

D−→
{

max
f∈Φ∗(r ,r)

〈G, f 〉
}1/p

� One sample (r 6= s):

√
n{Wp(r̂n, s)−Wp(r , s)} D−→ 1

p
W 1−p

p (r , s)

{
max

f∈Φ∗(r ,s)
〈G, f 〉

}

� r̂n empirical measure generated by X1, . . . ,Xn
i.i.d.∼ r

� Φ∗(r , s) set of dual solutions

� G the Gaussian limit of
√
n(r̂n − r)
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Limit laws for empirical OT-distances

Proof strategy:

� Consider the OT-distance as the optimal value of a finite

dimensional linear program

(r , s) 7→ min
π∈Π(r ,s)

N∑
i,j=1

dp(xi , xj)πij .

� Prove that this functional is directionally Hadamard

differentiable (Gal & Greenberg (1997))

� Apply (generalized) delta method (Römisch (2004))
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Limit laws for empirical OT-distances – Extensions

� Can be extended to Wp(r̂n, ŝm)

� Explicit limit distributions, e.g. for tree metrics, non-degeneracy

� m out of n bootstrap (need m = o(n); n out of n bootstrap fails)

� Limit laws for countable metric spaces X = {x1, x2, . . .} (Tameling,

Sommerfeld & Munk (2017))

. requires a careful calibration of the norm

. only for measures r with
∑∞

i=1 d
p(xi , x0)

√
ri <∞, where

x0 ∈ X arbitrary
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Computational burden of OT-distances

In general, the computational cost to calculate the OT-distance

Wp(r , s) :=

 min
π∈Π(r ,s)

N∑
i,j=1

dp(xi , yj)πij


1/p

is of order O(N3 log(N)).

Workarounds:

� Exploiting the underlying metric structure (Ling & Okada (2007))

� Graph sparsification (Pele & Werman (2009))

� Specialized algorithms, e.g. shortlist (Gottschlich & Schuhmacher

(2014)), shielding neighborhood (Schmitzer (2016))

� Subsampling methods (Sommerfeld, Schrieber & Munk (2018))

� Regularization methods (Cuturi (2013), Dessein et al. (2016))
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Regularized optimal transport

Let f : RN×N → R be the negative entropy

f (π) :=

{∑N
i,j=1 πij log(πij) for π ∈ RN×N

+ ,

+∞ otherwise.

For two measures r , s on the finite metric space X = {x1, . . . , xN} and

λ > 0 find the regularized transport plan

πλ(r , s) = arg min
π∈Π(r ,s)

N∑
i,j=1

dp(xi , xj)πij + λ f (π) .

Define the regularized OT-distance (a.k.a. Sinkhorn divergence, rot

mover’s distance) as

Wλ,p(r , s) :=


N∑

i,j=1

dp(xi , xj)πλ(r , s)ij


1/p

.

9/19



Regularized optimal transport

Let f : RN×N → R be the negative entropy

f (π) :=

{∑N
i,j=1 πij log(πij) for π ∈ RN×N

+ ,

+∞ otherwise.

For two measures r , s on the finite metric space X = {x1, . . . , xN} and

λ > 0 find the regularized transport plan

πλ(r , s) = arg min
π∈Π(r ,s)

N∑
i,j=1

dp(xi , xj)πij + λ f (π) .

Define the regularized OT-distance (a.k.a. Sinkhorn divergence, rot

mover’s distance) as

Wλ,p(r , s) :=


N∑

i,j=1

dp(xi , xj)πλ(r , s)ij


1/p

.

9/19



Regularized optimal transport

Let f : RN×N → R be the negative entropy

f (π) :=

{∑N
i,j=1 πij log(πij) for π ∈ RN×N

+ ,

+∞ otherwise.

For two measures r , s on the finite metric space X = {x1, . . . , xN} and

λ > 0 find the regularized transport plan

πλ(r , s) = arg min
π∈Π(r ,s)

N∑
i,j=1

dp(xi , xj)πij + λ f (π) .

Define the regularized OT-distance (a.k.a. Sinkhorn divergence, rot

mover’s distance) as

Wλ,p(r , s) :=


N∑

i,j=1

dp(xi , xj)πλ(r , s)ij


1/p

.

9/19



Limit laws for empirical regularized transport plans

The empirical regularized transport plan is defined as

πλ(r̂n, s) = arg min
π∈Π(r̂n,s)

N∑
i,j=1

dp(xi , xj)πij + λ f (π) .

Theorem (K., Tameling & Munk (2018))

With the sample size n approaching infinity, it holds for r = s and r 6= s

that

√
n {πλ(r̂n, s)− πλ(r , s)} D−→ NN2 (0,Σλ(r |s)) .

Remark

Limit distributions for the (nonregularized) transport plan (λ = 0) are

not known.
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Proof strategy:

� We think of πλ(r , s) as a vector and consider the functional

φλ : (r , s) 7→ arg min
π∈RN2

〈dp,π〉+ λf (π)

s.t. A?π =
[
r , s?

]T
.

Advantage to (nonregularized) OT: Uniqueness of πλ(r , s)

� Sensitivity analysis of the optimal solution (Fiacco (1983)):

. State optimality conditions for πλ(r , s) (a.k.a. KKT-conditions)

. Apply the implicit function theorem

⇒ The function φλ is differentiable

Advantage to (nonregularized) OT: Non-Sparsity of πλ(r , s)

� Apply (multivariate) delta method (van der Vaart (2000))
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The covariance matrix Σλ(r |s)

According to the implicit function theorem we obtain that

∇φλ(r , s) = DAT
? [A?D AT

? ]−1 .

� A? is the coefficient matrix encoding the marginal constraints

� D is a diagonal matrix with diagonal πλ(r , s)

Hence, the (multivariate) delta method tells us that

Σλ(r |s) = ∇rφλ(r , s) Σ(r)∇rφλ(r , s)T .
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Limit laws for empirical regularized transport distances

One can also consider directly the optimal value of the regularized

transport problem, i.e.,

pλ(r , s) = min
π∈Π(r ,s)

N∑
i,j=1

dp(xi , xj)πij + λ f (π) .

Theorem (Bigot, Cazelles & Papadakis (2017))

With the sample size n approaching infinity, it holds for r = s and r 6= s

that

√
n{pλ(r̂n, s)− pλ(r , s)} D−→ 〈G, λ log(u)〉

� The vector u is the left scaling for the regularized transport plan

πλ(r , s) = diag(u) exp

(
−dp

λ

)
diag(v)

� G the Gaussian limit of
√
n(r̂n − r)
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Speed of convergence
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Figure 1: Density for the sample distribution (dashed line, n = 10 samples) for

r = s (left) and r 6= s (right) and the density of the corresponding normal limit (solid

line).
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Figure 2: Kolmogorov-Smirnov distance on a logarithmic scale between the finite

sample distribution (n = 25) and the theoretical normal distribution averaged over five

measures.
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n out of n bootstrap

As a byproduct of the delta method, we obtain consistency of the n

out of n bootstrap:

Theorem (K., Tameling & Munk (2018))

With the sample size n approaching infinity, it holds for r = s and r 6= s

that

sup
h∈BL1(R)

|E[h(
√
n {Wλ,p(r̂∗n , s)−Wλ,p(r̂n, s)})|X1, . . . ,Xn]

− E[h(
√
n {Wλ,p(r̂n, s)−Wλ,p(r , s)})]| P−→ 0 .

� BL1(R) := {f : R→ R | ‖f ‖∞ ≤ 1, |f (z1)− f (z2)| ≤|z1 − z2|}
� r̂∗n bootstrapped version of r̂n
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� r̂∗n bootstrapped version of r̂n
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Limit laws for empirical regularized transport – Extensions

� Limit laws hold for more general regularizers:

Let f be twice continuously differentiable on the interior of its

domain with positive definite Hessian ∇2f . Moreover, assume that

(A1) f of Legendre type,

(A2) RN2

− ⊂ dom f ∗,

(A3) (0, 1)N
2 ⊆ dom f ,

(A4) dom f ⊆ RN2

+ .

Examples are given by Dessein et al. (2016), e.g.

. Burg entropy: f (π) =
∑N2

i,j=1 log(πij)− πij − 1

. lp quasi norm: f (π) =
∑N2

i,j=1 πij
p , 0 < p < 1
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Summary: (nonregularized) OT vs. regularized OT

� Different limit laws under equality of measures (non-normal vs.

normal)

(Nonregularized) OT-distance regularized OT-distance

n1/2pWp(r̂n, r)
√
n {Wλ,p(r̂n, r)−Wλ,p(r , r)}yD yD{

max
f∈Φ∗(r ,r)

〈G, f 〉
}1/p

N1(0, σ2
λ(r |r))

� Different scaling behavior, i.e., for regularized OT-distance the

scaling behavior is independent of p

� We find that

lim
λ↘0

σ2
λ(r |r) = 0 .
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